Abstract

AbstractOur study explores the use of porous carbon as anode catalyst support to improve borohydride utilization in a direct borohydride fuel cell. Pt catalysts supported by carbon aerogel (CA) and macroporous carbon (MPC) are synthesized by template method. The pores in porous carbon materials catch hydrogen bubbles to regulate the contact of anolyte with catalytic sites, and this leads to the depression of hydrogen evolution during BH4− electrooxidation. However, the hydrogen bubbles in the pores simultaneously deteriorate charge carrier transport and thus increase anode polarization. The CA‐supported Pt catalyst improves the coulombic efficiency of BH4− electrooxidation. However, the MPC‐supported Pt catalyst performed better than the CA‐supported Pt catalyst. MPC also has a good pore distribution, which improves the coulombic efficiency of BH4− electrooxidation without decreasing anode performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.