Abstract

In this study, a new hydroxyapatite (HA)/polyurethane (PU) composite porous scaffold was developed by in situ polymerization. Aliphatic isophorone diisocyanate as a nontoxic and safe agent was adopted to produce the rigid segment in polyurethane polymerization. Hydroxyapatite powder was compounded in a PU polymer matrix during the polymeric process. The macrostructure and morphology as well as mechanical strength of the scaffolds were characterized by FTIR, XRD, DSC and SEM. The results show that the isophorone diisocyanate can react mildly with hydroxyl (–OH) groups of castor oil and a mild foaming action caused by the release of CO2 gas occurred simultaneously in the reactive process, thus producing a uniform porous structure of HA/PU scaffold. The HA/PU composite scaffold with a high HA content of about 60 wt% has a porosity of more than 78% and a pore size from 100 µm to 800 µm. The HA/PU scaffold exhibited good cytocompatibility estimated by co-culturing the scaffold with MG63 cells through MTT test. The porous composite scaffold has good homogenization and a perfect three-dimensional structure for cell migration and bone tissue ingrowth, and should have good prospects for bone tissue regeneration.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call