Abstract

This work reports the use of undoped porous amorphous/nanocrystalline hydrogenated silicon (a/nc-Si:H) thin films produced by hot wire chemical vapour deposition (HW-CVD) as ethanol detector above 50ppm and as a primary fuel cell where a power of 4μW/cm2 was obtained in structures of the type glass/ITO/i-a-nc-Si:H/Al. The porous silicon looks like a sponge constituted by grains and cluster of grains that determines the type of surface morphology and the behaviour of the structure under the presence of vapour moisture. Apart from that, the detector/device performances will also depend on the type of interlayer and interfaces with the metal contacts. The sponge like structure adsorbs the OH groups in uncompensated bonds, which behave as donor-like carriers, leading to an increase in the current flowing through the material, directly dependent on the ethanol vapour pressure. The corresponding role of the components of the microstructure on this detector was investigated by spectroscopic impedance. The response time of the current of the sensor and its recovery time are in the range of 10–50s at room temperature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.