Abstract

ABSTRACTAt the high temperatures during hot-wire assisted chemical vapor deposition, ther- mal emission of electrons from the filament occurs. We studied the effect of filament bias, and thus the filament-to-substrate current, on the structural, electronic and optical properties of amorphous and nanocrystalline silicon deposited by this method. The current drawn by the substrate can be varied by many orders of magnitude as thermally emitted electrons are increasingly collected with applied bias voltage. The crystallinity of the nanocrystalline samples is not affected by the bias voltage. The defect density in amorphous silicon is affected by the electron bombardment at high bias voltage only, for which we also find a significant reduction in the mobility-lifetime product from steady-state photoconductivity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.