Abstract

This work has been developed for a comparative purpose concerning the processing and respective mechanical performance of CFRP composites processed by resin transfer molding (RTM) and compression molding (CM) techniques. Thermal and viscosimetric tests before processing certified the optimal parameter procedure. Both composites were submitted to short-beam shear tests and through microscopy to determine failure mechanisms. CM specimens presented a decrease of 27% in shear strength caused by the presence of macro porosity that induced crack initiation and connection of different delamination plies, causing the speeding up of crack propagation and jump of the interlaminar layer. The low capillary effect and higher viscous force were responsible for macro porosity, inducing heterogeneous impregnation in CM and to the direction reduce in mechanical behavior. On the other hand, more homogeneous impregnation in RTM specimens was responsible for the absence of macro porosity, ensuring higher values of shear strength and lower void volume fraction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.