Abstract

It is imperative to control the etching direction in metal-assisted chemical etching (MACE) to engineer the surface crystalline orientation of as-generated silicon nanowires (SiNWs). At room temperature, MACE of n-Si(111) carries out along the intrinsic back-bond etching direction of [111] under [HF]/[AgNO3] ≥ 50. When n-Si(111) is heavily doped, MACE generates mesoporous SiNWs (mp-SiNWs) standing on a mesoporous silicon (mpSi) layer. The porosification substantially weakens the back bonds underneath the sinking metal particles, leading to a deviation of etching from [111]. The selection of etching direction is governed by an angle of the selected direction to [111], and small angle is preferential. Due to the thermodynamic preference of the intrinsic back-bond etching, the etching along [111] is retained at ≥30 °C. Zigzag mp-SiNWs are first created under high [HF] and solution stirring, attributed to the HF-induced heating and stirring-stimulated H2 evaporation. This work would potentially pave a way to ...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.