Abstract
This paper inspects the behavior of thermoelastic waves in the homogeneous, transversely isotropic plate containing voids immersed in the inviscid fluid in reference to the one-temperature generalized model of thermoelasticity. The basic governing equations for the solid plate have been developed in the context of the linear theory of poro-thermoelasticity. Helmholtz decomposition principle has been employed to solve the equations of motion for liquid. For the stress-free solid-liquid interfaces, the isothermal and thermally insulated boundary conditions have been applied simultaneously on the obtained solutions. The solutions of governing equations reveal that there exists a coupled system of waves namely thermal waves, void wave motion, and elastic waves, and a decoupled purely transverse wave. Apart from that, one mechanical wave in each liquid layer also exists. The secular equation for anti-symmetric and symmetric modes of vibration has been derived which better explains wave motion. To unveil the wave characteristics, the numerical–functional iteration technique has been employed for generating numerical data and results have been validated by tracing out the various graphs. The effects of temperature change, as well as voids in the solid plate and inviscid liquid in the neighborhood of the plate, have been noticed on phase velocity, attenuation coefficient, etc
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.