Abstract

In the present paper, the theory of generalized thermo-microstretch elasticity has been employed to study the propagation of straight and circular crested waves in microstretch thermoelastic plates bordered with inviscid liquid layers (or half-spaces), with varying temperature on both sides. The secular equations governing the wave motion in both rectangular and cylindrical plates have been investigated. The results in the case of thin (long wavelength) and thick (short wavelength) plates have also been obtained and discussed as special cases of this work. The secular equation in the case of microstretch coupled with thermoelastic, micropolar thermoelastic and thermoelastic plates can be obtained from the present analysis by an appropriate choice of relevant parameters. The results have been deduced and compared with the relevant publications available in the literature at the appropriate stages of this work. Finally, the analytical developments have been illustrated numerically for aluminum–epoxy-like material sandwiched in the inviscid liquid. The computer simulated results in respect of phase velocity, attenuation coefficient, specific loss factor of energy dissipation and relative frequency shift due to liquid layers on both sides of the plate are presented graphically.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.