Abstract

This work presents results of Monte Carlo simulations of isothermal drying of a nonhygroscopic porous media initially saturated with a sugar solution. The porous media is represented by a two-dimensional network of cubic pores connected by throats with a given radius distribution. The considered network had just one open side (the three other sides were sealed) from which water evaporation occurred. Water evaporation, hydraulic flow, and diffusivity of sucrose in water are considered in the physical model. It was considered that drying occurred under isothermal conditions (low drying rates) and that the capillary forces surpass the viscous forces, as in invasion percolation. It was also considered that water evaporation inside the network of pores and throats causes solution concentration, which remains at the corners, allowing hydraulic connection throughout the whole network. At each simulation step, a single meniscus moves through a particular pore segment with the higher displacing force. As drying progresses, air replaces the solution. Determination of the mechanism prevailing at any given drying stage requires calculation of evaporation. In other words, each step of the simulation involves finding the solution to three systems of equations: the vapor pressure field in the vapor phase, the pressure field in the liquid phase, and the solutes' concentration in the liquid phase. Herein, we report results of drying curves calculated as a function of the sucrose and water saturation and of the distribution of liquid, sucrose, and vapor as drying advances. The results presented in this work showed that network models are a powerful tool for investigating the influence of the main mechanisms controlling drying at its different stages; that is, from liquid saturation condition to very low saturation (end of drying). Despite the applied simplifications, the model can capture the main aspects of drying of liquids and solutions present in porous media.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call