Abstract

The underground gas storage (UGS) in depleted sandstone reservoirs forms the largest proportion of the UGS market in China. Multiple cycles of natural gas injection and production in the sandstone cause the rapid increase and drawdown of pore pressure, which may induce damage to the rock skeleton structure, and cause complex fluid flow paths in the sandstone reservoir. In this paper, transverse relaxation time (T2), nuclear magnetism resonance imaging, and high-pressure mercury intrusion analysis are combined to evaluate the variation in pore structure of medium-grained sandstone. The results show that cyclic injection and production of fluid leads to a slight increase in total pore volume, indicating that weak damage to rocks occurs. The T2 spectrum at the low pore pressure (10 MPa) and high pore pressure (25 MPa) both show that the shrinkage of the medium-size pores occurs after multiple cycles of injection and production. The pore volume of large-size pores was not highly correlated with the number of cycles. With the increase in pore pressure, the pore volume ratio under high pore pressure increased with the number of cycles, while it fluctuated strongly under low pore pressure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.