Abstract

We translocated polymers through pores of different shapes and interaction patterns in three dimensions by Langevin molecular dynamics. There were four simple cylindrical pores of the same length but with different diameters. The results showed that even though decreasing the pore diameter would always decrease the translocation velocity, it was strongly dependent on the shape of the increased pore diameter. Although increasing the pore diameter made the translocation faster in simple cylindrical pores, it was complicated in different pore shapes, e.g. increasing the diameter in the middle decreased the translocation velocity. Investigating polymer shapes through the translocation process and comparing the shapes by the cumulative waiting time for different pore structures reveals the non-equilibrium properties of translocation. Moreover, polymer shape parameters such as gyration radius, polymer center of mass, and average aspect ratio help us to distinguish different pore shapes and/or different polymers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call