Abstract
A porous structure on the surface of the intermetallic NiAl compound was obtained after the fibrous tungsten phase of directionally solidified NiAl-W eutectic alloys was selectively removed by pulsed polarization. Pore shape, diameter, and spacing were dependent on growth rate during directional solidification. Pore diameter and spacing decreased with increasing growth rate. Nanopores with a diameter of 220 nm and an etching depth of 45.56 μm were produced at a pulsed potential of 0.5 V and an etching duration of 72 hours. With prolonged etching, pore diameter remained unchanged and etching depth increased. The Vickers microhardness of the porous intermetallic NiAl compound (0.325 to 0.351 GPa) was lower than that of the directionally solidified NiAl-W eutectic alloys. The microhardness of the porous intermetallic NiAl compound decreased with increasing pore diameter, pore spacing, or etching depth.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.