Abstract

The pore shape affects the pressure of mercury intrusion in ways not contemplated by the usual Washburn-Laplace or Kloubek-Rigby-Edler models. These models have been developed for cylindrical pores and correctly account for the penetration of mercury in the cylindrical pores of MCM-41. The uneven surface of the cylindrical pores of SBA-15 is responsible for a significant increase of the pressure of mercury intrusion and, thereby, for a corresponding underevaluation of the pore size if the classical pressure-size correlations are applied.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.