Abstract

At present, researches on the pore evolution of shale reservoir and its evolution mechanism are still at such a groping stage that a consensus has not yet reached. Based on core analysis and thermal simulation experiments, the pore types, pore structures and pore-size change rules of shale gas reservoirs of Upper Ordovician Wufeng–Lower Silurian Longmaxi Fms in the southeastern (SE) Sichuan Basin and its basin-margin transition zone (hereinafter referred to as the basin-margin transition zone of SE Chongqing) were studied by means of argon ion polishing–scanning electron microscopy (SEM) and atomic force microscopy. Then, the evolution characteristics of organic pores were discussed, and the influence of associated minerals on pore evolution was analyzed. Finally, a pore evolution model for the shale gas reservoirs in this area was established. And the following research results were obtained. First, three types of reservoir spaces are mainly developed in the high-quality shale reservoirs of Wufeng–Longmaxi Fms in this area, including fracture, inorganic pore and organic pore. And the organic pores provide the primary reservoir space of shale gas, which can be divided into four categories, i.e., amorphous kerogen pores, structured kerogen pores, asphaltene pores and paleontology fossil pores. Second, organic contracted fractures are related to the contraction of organic matters, first appearing on one side of the organic matters and then becomes wider and wider with the increase of temperatures. Third, organic pores are mostly the “spongy” pores distributed densely inside the organic matters. When Ro is in the range of 1.56–3.50%, macropores and mesopores are dominant. And when Ro exceeds 3.50%, macropores decrease while mesopores and micropores increase. Fourth, the types of organic matters and the content of associated minerals (e.g. clay minerals, siliceous particles and pyrite) play an important role in the development of pores. In conclusion, the pore evolution law of Wufeng–Longmaxi shale in the basin-margin transition zone of SE Chongqing is that with the increase of burial depth, inorganic porosity decreases significantly, organic porosity increases first and then decreases, and the total porosity shows a change trend of decreasing first, then increasing and finally decreasing continuously.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call