Abstract

It is of great significance to study the soil pore structure for soil reinforcement and ground treatment because it can be used to evaluate the solidification effect and explain the curing mechanism. The pore and compression characteristics of clay from Wuhan in China before and after solidification by ionic soil stabilizer (ISS) in different soil initial states were studied by the use of standard consolidation test, environmental scanning electron microscope analysis, specific surface area (SSA) test, and analysis by PCAS software. Results show that the influence sequence of soil initial states on the change of pore characteristics and ISS-solidification effectiveness was as follows: reducing initial water content + remolding soil > reducing initial water content > remolding soil > natural soil with high initial water content. Besides, loading can also increase the solidification effect. Compared to random and chaotic pore directions of natural clay, remolded solidified clay had a more certain direction after curing and compression. In addition, the total pore number and SSA decreased from 1190 to 756 by 36.47% and 109.690 m2/g to 87.837 m2/g by 19.92% respectively. Results indicate that ISS-clay solidification effect in practical engineering is closely related to the soil initial pre-curing state and can lead to the change of pore direction, decrease of pore number, reduction of pore size and porosity, and formation of larger aggregates.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call