Abstract
Intestinal epithelium functions as a barrier to protect multicellular organisms from the outside world. It consists of epithelial cells closely connected by intercellular junctions, selective gates which control paracellular diffusion of solutes, ions and macromolecules across the epithelium and keep out pathogens. Rotavirus is one of the major enteric viruses causing severe diarrhea in humans and animals. It specifically infects the enterocytes on villi of small intestines. The polarity of rotavirus replication in their target enterocytes and the role of intestinal epithelial integrity were examined in the present study. Treatment with EGTA, a drug that chelates calcium and disrupts the intercellular junctions, (i) significantly enhanced the infection of rotavirus in primary enterocytes, (ii) increased the binding of rotavirus to enterocytes, but (iii) considerably blocked internalization of rotavirus. After internalization, rotavirus was resistant to EGTA treatment. To investigate the polarity of rotavirus infection, the primary enterocytes were cultured in a transwell system and infected with rotavirus at either the apical or the basolateral surface. Rotavirus preferentially infected enterocytes at the basolateral surface. Restriction of infection through apical inoculation was overcome by EGTA treatment. Overall, our findings demonstrate that integrity of the intestinal epithelium is crucial in the host’s innate defense against rotavirus infection. In addition, the intercellular receptor is located basolaterally and disruption of intercellular junctions facilitates the binding of rotavirus to their receptor at the basolateral surface.
Highlights
Diarrhea is one of the most important causes of death in young piglets and can be evoked by viruses, bacteria and parasites
Disruption of intercellular junctions between enterocytes increases their susceptibility to rotavirus The percentage of infection and the virus titer were evaluated at different time points post-inoculation (0, 9, 18 and 27 hpi) in ethylene glycol tetra-acetic acid (EGTA) or PBS treated cells
These results demonstrate that disruption of intercellular junctions clearly increases the susceptibility of primary enterocytes to rotavirus infection
Summary
Diarrhea is one of the most important causes of death in young piglets and can be evoked by viruses, bacteria and parasites. Rotaviruses are considered as the most important pathogens that cause diarrhea in piglets and children. They belong to the genus rotavirus within the family Reoviridae. It consists of a triple-layered capsid encapsulating a genome consisting of eleven segments of double-stranded RNA (dsRNA) that encodes six structural (VP1–VP4, VP6 and VP7) and six non-structural (NSP1–NSP6) proteins. Each gene segment encodes one viral protein, except for gene segment eleven which encodes NSP5 and NSP6. Rotavirus infects primarily mature enterocytes in the polarized intestinal
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have