Abstract

The metabolic pathways of central carbon metabolism (CCM), glycolysis and the tricarboxylic acid (TCA) cycle, are important host factors determining the outcome of viral infection. Thus, it is not surprising that viruses easily manipulate CCM for optimized replication. Porcine reproductive and respiratory syndrome virus (PRRSV) is an Arterivirus that has devastated the swine industry worldwide for over 30 years. However, whether PRRSV reprograms CCM is still unclear. In this study, we found that PRRSV infection increased the intensity of cellular uptake of glucose and glutamine, two main carbon sources for mammalian cells. Deprivation of glucose and/or glutamine significantly reduced PRRSV replication; restricted entry of glucose and glutamine into CCM inhibited PRRSV proliferation. We further found that PRRSV infection elevated glycolysis and maintained the TCA cycle flux. Furthermore, preventing the flow of glycolysis or the TCA cycle led to a reduction in PRRSV proliferation. The anaplerotic usage of glutamine in the TCA cycle partially rescued PRRSV growth by replacing glutamine with α-ketoglutarate (α-KG), an intermediate of the TCA cycle. Interestingly, the addition of α-KG in replete medium also promoted PRRSV proliferation. Taken together, these results reveal that PRRSV infection promotes cellular uptake of glucose and glutamine to provide the energy and macromolecules required for PRRSV replication, and optimal PRRSV replication occurs in cells dependent on glycolysis and the TCA cycle.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.