Abstract

BackgroundSufentanil is commonly used for analgesia and sedation during extracorporeal membrane oxygenation (ECMO). Both ECMO and the pathophysiological changes derived from critical illness have significant effects on the pharmacokinetics (PK) of drugs, yet reports of ECMO and sufentanil PK are scarce. Here, we aimed to develop a population PK model of sufentanil in ECMO patients and to suggest dosing recommendations.MethodsThis prospective cohort PK study included 20 patients who received sufentanil during venoarterial ECMO (VA-ECMO). Blood samples were collected for 96 h during infusion and 72 h after cessation of sufentanil. A population PK model was developed using nonlinear mixed effects modelling. Monte Carlo simulations were performed using the final PK parameters with two typical doses.ResultsA two-compartment model best described the PK of sufentanil. In our final model, increased volume of distribution and decreased values for clearance were reported compared with previous PK data from non-ECMO patients. Covariate analysis showed that body temperature and total plasma protein level correlated positively with systemic clearance (CL) and peripheral volume of distribution (V2), respectively, and improved the model. The parameter estimates of the final model were as follows: CL = 37.8 × EXP (0.207 × (temperature − 36.9)) L h−1, central volume of distribution (V1) = 229 L, V2 = 1640 × (total plasma protein/4.5)2.46 L, and intercompartmental clearance (Q) = 41 L h−1. Based on Monte Carlo simulation results, an infusion of 17.5 μg h−1 seems to reach target sufentanil concentration (0.3–0.6 μg L−1) in most ECMO patients except hypothermic patients (33 °C). In hypothermic patients, over-sedation, which could induce respiratory depression, needs to be monitored especially when their total plasma protein level is low.ConclusionsThis is the first report on a population PK model of sufentanil in ECMO patients. Our results suggest that close monitoring of the body temperature and total plasma protein level is crucial in ECMO patients who receive sufentanil to provide effective analgesia and sedation and promote recovery.Trial registrationClinicaltrials.gov NCT02581280, December 1st, 2014.

Highlights

  • Sufentanil is commonly used for analgesia and sedation during extracorporeal membrane oxygenation (ECMO)

  • Volume of distribution (Vd) is altered owing to physiologic changes related to critical illness, hemodilution, and sequestration in ECMO circuit, while clearance (CL) is variable owing to organ dysfunction and non-pulsatile flow in Venoarterial extracorporeal membrane oxygenation (VA-ECMO) [13,14,15]

  • We aimed to develop a population PK model of sufentanil in ECMO patients and identify covariates associated with sufentanil exposure in order to suggest a more rational dosing recommendation

Read more

Summary

Introduction

Sufentanil is commonly used for analgesia and sedation during extracorporeal membrane oxygenation (ECMO). Both ECMO and the pathophysiological changes derived from critical illness have significant effects on the pharmacokinetics (PK) of drugs, yet reports of ECMO and sufentanil PK are scarce. Sufentanil is a synthetic opioid drug, which has a rapid onset and is 5–10 times more potent than fentanyl [9]. It is highly protein bound (91–93%) [10], metabolised by the liver, and excreted as metabolites in the urine (2% unchanged, 80% metabolites) [11]. We aimed to develop a population PK model of sufentanil in ECMO patients and identify covariates associated with sufentanil exposure in order to suggest a more rational dosing recommendation

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.