Abstract

The giant kelp Macrocystis pyrifera is in global decline as a result of numerous stressors operating on both local and global scales. It is a species that holds significant value in terms of the ecosystem services that it provides and its application in aquaculture. In order to safeguard, restore and utilize this species, it is essential that a sound understanding of genetic structure and diversity is established at scales relevant to local management. Seven microsatellite markers were used to analyze 389 individuals from sites across eight geographical regions in New Zealand. While samples of M. pyrifera from the west coast of the South Island (Fiordland), were genetically isolated, the biogeographic separation of sites along the east coast of New Zealand, between Wellington and Stewart Island, remained unclear due to low genetic differentiation between regions. The greatest genetic diversity was seen in the southeast sites, whereas the northeast had the lowest diversity. This pattern is likely driven by the effects of stressors such as high sea surface temperature in these areas as well as oceanic circulation patterns. A key finding from this work was the significant genetic isolation, and therefore vulnerability of M. pyrifera in the Fiordland population, an area that is being subjected to more intense and longer lasting heatwave events.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.