Abstract

BackgroundThe Chinese grass shrimp, Palaemonetes sinensis, is an economically important freshwater shrimp in China, and the study of genetic diversity and structure can positively contribute to the exploration of germplasm resources and assist in the understanding of P. sinensis aquaculture. Microsatellite markers are widely used in research of genetic backgrounds since it is considered an important molecular marker for the analyses of genetic diversity and structure. Hence, the aim of this study was to evaluate the genetic diversity and structure of wild P. sinensis populations in China using the polymorphic microsatellite makers from the transcriptome.ResultsSixteen polymorphic microsatellite markers were developed for P. sinensis from transcriptome, and analyzed for differences in genetic diversity and structure in multiple wild P. sinensis populations in China. Totally of 319 individual shrimps from seven different populations were genotyped to find that allelic polymorphisms varied in two to thirteen alleles seen in the entire loci. Compared to other populations analyzed, the two populations including LD and SJ showed lower genetic diversity. Both the genetic distance (D) and Wrights fixation index (FST) comparing any two populations also indicated that LD and SJ populations differed from the other five populations. An UPGMA tree analysis showed three main clusters containing SJ, LD and other populations which were also confirmed using STRUCTURE analysis.ConclusionThis is the first study where polymorphic microsatellite markers from the transcriptome were used to analyze genetic diversity and structures of different wild P. sinensis populations. All the polymorphic microsatellite makers are believed useful for evaluating the extent of the genetic diversity and population structure of P. sinensis. Compared to the other five populations, the LD and SJ populations exhibited lower genetic diversity, and the genetic structure was differed from the other five populations. Therefore, they needed to be protected against further declines in genetic diversity. The other five populations, LP, LA, LSL, LSY and LSH, are all belonging to Liaohe River Drainage with a relatively high genetic diversity, and hence can be considered as hot spots for in-situ conservation of P. sinensis as well as sources of desirable alleles for breeding values.

Highlights

  • The Chinese grass shrimp, Palaemonetes sinensis, is an economically important freshwater shrimp in China, and the study of genetic diversity and structure can positively contribute to the exploration of germplasm resources and assist in the understanding of P. sinensis aquaculture

  • No consistencies were found to be significant in pair-wise comparisons for linkage disequilibrium (Ld) indicating that there was no linkage among these loci and their inclusion will not affect the results of genetic variability [12]

  • All the polymorphic microsatellite makers are believed useful for evaluating the extent of genetic diversity and population structure of P. sinensis

Read more

Summary

Introduction

The Chinese grass shrimp, Palaemonetes sinensis, is an economically important freshwater shrimp in China, and the study of genetic diversity and structure can positively contribute to the exploration of germplasm resources and assist in the understanding of P. sinensis aquaculture. The aim of this study was to evaluate the genetic diversity and structure of wild P. sinensis populations in China using the polymorphic microsatellite makers from the transcriptome. There are no studies investigating molecular marker based genetic diversity of P. sinensis, which has the potential to aid in the conservation and improvement of this shrimp species. The objectives of the current study were to validate variations of transcriptome-derived microsatellite markers and to analyze their underlying genetic background of different wild P. sinensis populations. It is hoped that this work could make a positive contribution to the molecular genetic analyses of P. sinensis populations and eventually serve as a basis for the improvement and sustainable conservation of P. sinensis aquaculture in China

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call