Abstract
In large groups of vertebrates and invertebrates, aggregation can affect biological characters such as gene expression, physiological, immunological and behavioral responses. The insect cuticle is covered with hydrocarbons (cuticular hydrocarbons; CHCs) which reduce dehydration and increase protection against xenobiotics. Drosophila melanogaster and D. simulans flies also use some of their CHCs as contact pheromones. In these two sibling species, males also produce the volatile pheromone 11-cis-Vaccenyl acetate (cVa). To investigate the effect of insect density on the production of CHCs and cVa we compared the level of these male pheromones in groups of different sizes. These compounds were measured in six lines acclimated for many generations in our laboratory - four wild-type and one CHC mutant D. melanogaster lines plus one D. simulans line. Increasing the group size substantially changed pheromone amounts only in the four D. melanogaster wild-type lines. To evaluate the role of laboratory acclimation in this effect, we measured density-dependent pheromonal production in 21 lines caught in nature after 1, 12 and 25 generations in the laboratory. These lines showed varied effects which rarely persisted across generations. Although increasing group size often affected pheromone production in laboratory-established and freshly-caught D. melanogaster lines, this effect was not linear, suggesting complex determinants.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have