Abstract

Coral reef fish serve as food sources to coastal communities worldwide, yet are vulnerable to mounting anthropogenic pressures like overfishing and climate change. Marine reserve networks have become important tools for mitigating these pressures, and one of the most critical factors in determining their spatial design is the degree of connectivity among different populations of species prioritized for protection. To help inform the spatial design of an expanded reserve network in Fiji, we used rapidly evolving mitochondrial genes to investigate connectivity patterns of three coral reef species targeted by fisheries in Fiji: Epinephelus merra (Serranidae), Halichoeres trimaculatus (Labridae), and Holothuria atra (Holothuriidae). The two fish species, E. merra and Ha. trimaculatus, exhibited low genetic structuring and high amounts of gene flow, whereas the sea cucumber Ho. atra displayed high genetic partitioning and predominantly westward gene flow. The idiosyncratic patterns observed among these species indicate that patterns of connectivity in Fiji are likely determined by a combination of oceanographic and ecological characteristics. Our data indicate that in the cases of species with high connectivity, other factors such as representation or political availability may dictate where reserves are placed. In low connectivity species, ensuring upstream and downstream connections is critical.

Highlights

  • One tool commonly used to mitigate global reef degradation is the creation of marine protected areas (MPAs) – spatially explicit areas of ocean where human activities are regulated or prohibited

  • We expand upon previous work and investigate the role of the Bligh Waters in shaping the connectivity patterns of three coral reef species commonly targeted by inshore fisheries across the Fijian archipelago (Fig. 1) – the honeycomb grouper Epinephelus merra (Serranidae), the three-spot wrasse Halichoeres trimaculatus (Labridae), and the black sea cucumber Holothuria atra (Holothuriidae)

  • Gene flow patterns support a scenario of high connectivity for both fish species, with the magnitude of migrants exchanged among populations estimated at hundreds to thousands per generation

Read more

Summary

Introduction

One tool commonly used to mitigate global reef degradation is the creation of marine protected areas (MPAs) – spatially explicit areas of ocean where human activities are regulated or prohibited. No-take marine reserves are important tools for conservation and fisheries management. They provide a refuge for exploited species, allow for fish and invertebrate stocks to recover, reproduce, and reseed adjacent unprotected areas through larval export and adult movement, while they protecting existing habitat from further degradation[5,6,7,8]. Previous work on connectivity among reefs in Fiji revealed asymmetrical gene flow along an east-west gradient for three of five coral reef fish species studied, potentially indicating that the Bligh Waters – a fast-moving current that bisects the main islands – could be facilitating larval transport for multiple taxa within Fiji[28]. We expand upon previous work and investigate the role of the Bligh Waters in shaping the connectivity patterns of three coral reef species commonly targeted by inshore fisheries across the Fijian archipelago (Fig. 1) – the honeycomb grouper Epinephelus merra (Serranidae), the three-spot wrasse Halichoeres trimaculatus (Labridae), and the black sea cucumber Holothuria atra (Holothuriidae)

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.