Abstract

Marine reserve networks must ensure the representation of important conservation features, and also guarantee the persistence of key populations. For many species, designing reserve networks is complicated by the absence or limited availability of spatial and life-history data. This is particularly true for data on larval dispersal, which has only recently become available. However, systematic conservation planning methods currently incorporate demographic processes through unsatisfactory surrogates. There are therefore two key challenges to designing marine reserve networks that achieve feature representation and demographic persistence constraints. First, constructing a method that efficiently incorporates persistence as well as complementary feature representation. Second, incorporating persistence using a mechanistic description of population viability, rather than a proxy such as size or distance. Here we construct a novel systematic conservation planning method that addresses both challenges, and parameterise it to design a hypothetical marine reserve network for fringing coral reefs in the Keppel Islands, Great Barrier Reef, Australia. For this application, we describe how demographic persistence goals can be constructed for an important reef fish species in the region, the bar-cheeked trout (Plectropomus maculatus). We compare reserve networks that are optimally designed for either feature representation or demographic persistence, with a reserve network that achieves both goals simultaneously. As well as being practically applicable, our analyses also provide general insights into marine reserve planning for both representation and demographic persistence. First, persistence constraints for dispersive organisms are likely to be much harder to achieve than representation targets, due to their greater complexity. Second, persistence and representation constraints pull the reserve network design process in divergent directions, making it difficult to efficiently achieve both constraints. Although our method can be readily applied to the data-rich Keppel Islands case study, we finally consider the factors that limit the method’s utility in information-poor contexts common in marine conservation.

Highlights

  • The exchange of individuals among patches of spatially-discrete habitat (“connectivity”) has broad implications for how and whether species persist in a region, how they respond to natural and anthropogenic disturbances at both ecological and evolutionary timescales [1,2], and how they should be managed [3,4,5]

  • Because reef fish populations outside marine reserves are generally depleted [22], and in some contexts almost non-existent [23], connectivity is required for these separated protected areas to exchange enough larvae to support persistent populations, and to provide the spillover that exports their benefits to the broader, unprotected landscape [24]

  • We demonstrate the application of this method by parameterizing it for a study area—the Keppel Islands group within the Great Barrier Reef Marine Park, Australia

Read more

Summary

Introduction

The exchange of individuals among patches of spatially-discrete habitat (“connectivity”) has broad implications for how and whether species persist in a region, how they respond to natural and anthropogenic disturbances at both ecological and evolutionary timescales [1,2], and how they should be managed [3,4,5]. Connectivity is especially important in the marine environment, where almost all fish and invertebrate species have an obligate and extended pelagic larval phase [11,12], and strong ocean currents can carry dispersing larvae long distances [13,14,15]. No-take areas, only constitute a relatively small proportion of important habitats [21], even in the best protected habitats such as the Great Barrier Reef Marine Park in Australia [21]. Because reef fish populations outside marine reserves are generally depleted [22], and in some contexts (e.g., the Philippines) almost non-existent [23], connectivity is required for these separated protected areas to exchange enough larvae to support persistent populations, and to provide the spillover that exports their benefits to the broader, unprotected landscape [24]

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.