Abstract

Abstract Common Carp Cyprinus carpio is a nonnative species that often has deleterious effects on aquatic systems. As such, there is interest in suppressing nonnative Common Carp populations in areas where humans have introduced them. The objectives of this study were to 1) provide insight on efficient techniques for capturing Common Carp, 2) describe their population demographics and dynamics, 3) evaluate whether temperature and water elevation were related to growth and recruitment, and 4) develop an age-structured population model for evaluating different management scenarios of Common Carp removal in Lake Spokane, Washington. Catch rates of Common Carp varied among sampling gears with slightly higher catch rates in monofilament (mean ± SD; 15.5 ± 9.8 fish/net night) vs. multifilament (12.7 ± 7.3 fish/net night) gill nets. Catch rates of Common Carp with nighttime electrofishing (0.3 ± 0.4 fish/min) were higher than daytime electrofishing (0.1 ± 0.2 fish/min). Common Carp in Lake Spokane exhibited variable recruitment, rapid growth, large-length structure, high longevity (i.e., age 18 y), and low total annual mortality (17.0%). Air temperature was positively associated with annual growth increments (R2 ≤ 0.25). Neither air temperature nor water elevation was highly correlated (R2 ≤ 0.20) to recruitment of Common Carp. A Beverton–Holt yield-per-recruit model suggested that yield declined with increasing exploitation. Recruitment overfishing would occur at exploitation rates of 20–40% for all targeted minimum length categories (i.e., 150, 300, 450 mm) except 600 mm. Results from this study provide important information on the ecology of Common Carp that can be used to guide management efforts (e.g., suppression) in western systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call