Abstract

Our input is a complete graph G on n vertices where each vertex has a strict ranking of all other vertices in G. The goal is to construct a matching in G that is popular. A matching M is popular if M does not lose a head-to-head election against any matching M': here each vertex casts a vote for the matching in {M,M'} in which it gets a better assignment. Popular matchings need not exist in the given instance G and the popular matching problem is to decide whether one exists or not. The popular matching problem in G is easy to solve for odd n. Surprisingly, the problem becomes texttt {NP}-complete for even n, as we show here. This is one of the few graph theoretic problems efficiently solvable when n has one parity and texttt {NP}-complete when n has the other parity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.