Abstract

AbstractIn this work, PVDF composites containing 0.2% (m/m) of carbon nanotubes (MWCNTs), PVDF with 5.0% (m/m) of zinc oxide (ZnO), and composites containing both particles in the same contents in the matrix were melt processed in a mini‐extruder machine with double screws, using the counter‐rotation mode. Composites were characterized by scanning electron microscopy (SEM), Fourier‐transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), X‐ray diffraction (XRD), dynamic‐mechanical analysis (DMA), and contact angle tests (CA). The samples presented the predominance of the α phase, with an increased degree of crystallinity as well as an increase in dimensional stability by incorporating both fillers, showing a synergistic effect between these particles, as shown on FTIR, DSC, and XRD results. SEM images showed a good dispersion of high aspect ratio particles. In general, DMA and TGA analysis showed that composites had not decreased their thermal and mechanical performance when compared to neat PVDF. Results of CA analysis showed an increase in the hydrophobicity of the sample containing MWCNTs. Permeability tests were also performed using a differential pressure system, combining high temperature and pressure, obtaining permeability measures and time lag. This work presents an alternative of composite materials, suggesting its application in the internal pressure sheath layers of oil and gas flexible pipes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.