Abstract

We study self-gravitating stars in the bootstrapped Newtonian picture for polytropic equations of state. We consider stars that span a wide range of compactness values. Both matter density and pressure are sources of the gravitational potential. Numerical solutions show that the density profiles can be well approximated by Gaussian functions. Later we assume Gaussian density profiles to investigate the interplay between the compactness of the source, the width of the Gaussian density profile and the polytropic index. We also dedicate a section to comparing the pressure and density profiles of the bootstrapped Newtonian stars to the corresponding General Relativistic solutions. We also point out that no Buchdahl limit is found, which means that the pressure can in principle support a star of arbitrarily large compactness. In fact, we find solutions representing polytropic stars with compactness above the Buchdhal limit.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.