Abstract

We explore a class of compact charged spheres made of a charged perfect fluid with a polytropic equation of state. The charge density is chosen to be proportional to the energy density. The study is performed by solving the Tolman-Oppenheimer-Volkoff (TOV) equation which describes the hydrostatic equilibrium. We show the dependence of the structure of the spheres for several characteristic values of the polytropic exponent and for different values of the charge densities. We also study other physical properties of the charged spheres, such as the total mass, total charge, radius and sound speed and their dependence on the polytropic exponent. We find that for the polytropic exponent \gamma=4/3 the Chandrasekhar mass limit coincides with the Oppenheimer-Volkoff mass limit. We test the Oppenheimer-Volkoff limit for such compact objects. We also analyze the Buchdahl limit for these charged polytropic spheres, which happens in the limit of very high polytropic exponents, i.e., for a stiff equation of state. It is found that this limit is extremal and it is a quasiblack hole.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call