Abstract
Polythiophenes (PTs) are an attractive class of polymer donors (PDs) for organic solar cells (OSCs) owing to their relatively simple structures and scalable synthesis. Herein, a series of chlorinated thiazole-incorporated PT terpolymers are designed and high-performance OSCs with a power conversion efficiency (PCE) of 16.6% are demonstrated. By incorporating two different units, 3,3′-difluoro-2,2′-bithiophene (T2F2) and thieno[3,2-b]thiophene (TT), the aggregation properties of the terpolymers (PTz-FX; X = 0, 30, 50, 70, and 100, where X represents the mole percentage of T2F2 to total T2F2 +TT) are modulated. Among the PTz-FX series, PTz-F70 is found to be the optimal PD because its suitably tuned aggregation property leads to an optimized blend morphology with well-developed crystalline structures and donor–acceptor intermixed domains. The balanced morphology not only promotes charge generation/transport but also suppresses charge recombination in OSC devices. Thus, the PTz-F70-based OSCs achieve the highest PCE (16.6%), outperforming the OSCs based on PTz-FX with extremely strong (PTz-F100, PCE = 14.7%) or weak (PTz-F0, PCE = 12.0%) aggregation properties. The PCE of the PTz-F70-based OSCs is one of the highest performances among PT-based binary OSCs. This study highlights the importance of controlling the aggregation property of PTs for achieving high-performance PT-based OSCs.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.