Abstract

Small-molecule acceptor (SMA)-based organic solar cells (OSCs) have achieved high power conversion efficiencies (PCEs), while their long-term stabilities remain to be improved to meet the requirements for real applications. Herein, we demonstrate the use of donor-acceptor alternating copolymer-type compatibilizers (DACCs) in high-performance SMA-based OSCs, enhancing their PCE, thermal stability, and mechanical robustness simultaneously. Detailed experimental and computational studies reveal that the addition of DACCs to polymer donor (PD)-SMA blends effectively reduces PD-SMA interfacial tensions and stabilizes the interfaces, preventing the coalescence of the phase-separated domains. As a result, desired morphologies with exceptional thermal stability and mechanical robustness are obtained for the PD-SMA blends. The addition of 20 wt % DACCs affords OSCs with a PCE of 17.1% and a cohesive fracture energy (Gc) of 0.89 J m-2, higher than those (PCE = 13.6% and Gc = 0.35 J m-2) for the control OSCs without DACCs. Moreover, at an elevated temperature of 120 °C, the OSCs with 20 wt % DACC exhibit excellent morphological stability, retaining over 95% of the initial PCE after 300 h. In contrast, the control OSCs without the DACC rapidly degraded to below 60% of the initial PCE after 144 h.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call