Abstract
Three different fillers, carbon black (CB), vapor grown carbon fibers (VGCF), and TiO(2), were incorporated into polysulfone spinning solutions with the intention of producing highly selective membranes with enhanced mechanical strength. The effect of filler presence on gas permeation characteristics, mechanical strength (bursting pressure), and morphology was investigated and compared to unfilled membranes. As well as studying filler types, the influence of CB filler concentration on membrane performance was also examined. For all filler types (at a concentration of 5%w/w), the pressure-normalized flux of O(2), N(2), and CH(4) was greater in the composite than in the unfilled membranes. The CO(2) pressure-normalized flux was only greater in the TiO(2) composite membranes. For CB and VGCF, the CO(2) pressure-normalized flux was reduced compared with unfilled membranes. Three CB concentrations were investigated (2, 5, and 10%w/w). For O(2), N(2), and CH(4), pressure-normalized flux peaked at 5%w/w CB. CO(2) exhibited the opposite trend, showing a minimum pressure-normalized flux at 5%w/w. Considering O(2)/N(2) and CO(2)/CH(4) gas pairs and the various filled membrane categories, only the O(2)/N(2) selectivity of the 2%w/w CB filled membranes was higher than that of the unfilled fibers-all other selectivities were lower. In terms of CB concentration, selectivity was a minimum at the intermediate concentration of 5%w/w. All the filled membrane types exhibited greater mechanical strength (bursting pressure) than unfilled fibers apart from the 5%w/w VGCF composites. The 2%w/w CB composites were the strongest. Electron microscopy showed no visible differences in general morphology between the various filled and unfilled membranes.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have