Abstract

We report the synthesis of metal-chalcogenide aerogels from Pt(2+) and polysulfide clusters ([S(x)](2-), x = 3-6). The cross-linking reaction of these ionic building blocks in formamide solution results in spontaneous gelation and eventually forms a monolithic dark brown gel. The wet gel is transformed into a highly porous aerogel by solvent exchanging and subsequent supercritical drying with CO(2). The resulting platinum polysulfide aerogels possess a highly porous and amorphous structure with an intact polysulfide backbone. These chalcogels feature an anionic network that is charged balanced with potassium cations, and hosts highly accessible S-S bonding sites, which allows for reversible cation exchange and mercury vapor capture that is superior to any known material.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.