Abstract
Electrocatalytic nitrate reduction reaction (eNO3RR) to ammonia (NH3) provides an intriguing approach for both environmental denitrification and sustainable NH3 synthesis. Herein, we report the fabrication of hierarchically mesoporous Co nanoparticles decorated N-doped carbon composites as a highly efficient electrocatalyst for eNO3RR by using monodispersed polystyrene spheres (PS) as sacrificial templates (MR Co-NC). By taking advantage of the large specific area of the pore-rich structures and the high intrinsic activity of metallic Co, the MR Co-NC shows remarkable activity toward eNO3RR, which achieves a partial current density of 268 mA cm−2 with a Faradaic efficiency (FE) of 95.35 ± 1.75 % and a generation rate of 1.25 ± 0.023 mmol h−1 cm−2 for NH3 production under the optimal conditions. The porous carbon skeleton was found to play a dual role by simultaneously protecting the active sites from oxidation and facilitating long-range charge and mass transfer. Theoretical calculations reveal a lower energy barrier of the rate-determining step (*NO2 + H2O + 2e- → *NO + 2OH-) on the metallic Co of MR Co-NC over β-Co(OH)2 formed by the reconstruction of carbon-free Co nanoparticles.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.