Abstract
Low freeze point paraffin-based phase change materials (PCMs) for thermal energy storage often have very high vapor pressure, rendering it extremely challenging to encapsulate. This work reports our success in fabricating amino resin microcapsules with low freeze point PCMs cargos. Our findings challenge the emulsifier selection criteria proposed a decade ago, and enable better understanding of the role of emulsifiers in the one-step encapsulation process without precondensate synthesis. A facile, low cost, efficient and efficacious screening method utilizing a fluorophore is reported here for fast examination of core retention without resorting to more complex or unnecessary quantification techniques. This method is transferable to other encapsulation methods or materials as a qualitative analysis tool. We report two new emulsifiers, i.e. xanthan gum and methylcellulose, which contribute to successful encapsulation of volatile cargos via the one-step in situ polymerization route. The concentration of xanthan gum affects not only the capsule size, but also shell thickness and surface roughness. Most importantly, we have demonstrated with methylcellulose that carboxyl or anhydride moieties in emulsifiers are not essential for the one-step process, contrary to the literature. Capsules produced with methylcellulose also demonstrate superior thermal cycling fatigue resistance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.