Abstract

Direct borohydride fuel cells (DBFCs) convert borohydride (NaBH4) chemical energy into clean electricity. However, catalytic active site deactivation in NaBH4 solution limits their performance and stability. We propose a strategy to regulate active sites in Co-based catalysts using polypyrrole modification (Co-PX catalyst) to enhance electrochemical borohydride oxidation reaction (eBOR). As an anode catalyst, the synthesized Co-PX catalyst exhibits excellent eBOR performance in DBFCs, with current density of 280 mA ⋅ cm-2 and power density of 151 mW ⋅ cm-2, nearly twice that of the unmodified catalyst. The Co-PX catalyst shows no degradation after 120-hour operation, unlike the rapidly degrading control. In-situ electrochemical attenuated total reflection Fourier-transform infrared spectroscopy (ATR-FTIRS) and density functional theory (DFT) suggest that polypyrrole-modified carbon support regulate the charge distribution, increasing oxidation state and optimizing adsorption/desorption of intermediates. A possible reaction pathway is proposed. This work presents a promising strategy for efficient polymer-modulated catalysts in advanced DBFCs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.