Abstract
BackgroundSkin aging is marked by progressive loss in elastin and collagen that causes wrinkling and sagging of skin. Tropoelastin (TE) is the precursor monomer of elastin secreted by cells that cross-links extracellularly to create functional elastic fibers. Cells maintain the capacity to make TE during the aging process. However, the process of extracellular tropoelastin cross-linking diminishes with age. Others have shown that TE production by cells increases with UV exposure. ObjectiveWe hypothesize that polyphenols may help coacervate cell secreted TE due to its elastin binding property and increase insoluble elastin in human dermal fibroblasts (HDFs). Increase in TE production by short term UV exposure may further improve elastin deposition by polyphenols. MethodsWe treated HDFs with polyphenols viz epigallocatechin gallate (EGCG) and pentagalloyl glucose (PGG) either with or without intermittent (UVA, 12 min three times a week) exposure for 3, 7, and 14 days. ResultsPolyphenols increased insoluble elastin deposition several folds as compared to control untreated cells. Furthermore, short UVA light exposure led to several-fold increased TE production in HDFs. Still, UVA exposure alone was unable to increase insoluble elastic fibers. When polyphenols were introduced with UVA exposure, insoluble elastin deposition was further enhanced in HDFs (30−45-fold increase). Polyphenol treatments with UVA exposure also led to increased collagen deposition in cell cultures. Polyphenols also prevented cell oxidation during UVA exposure. ConclusionsPolyphenols in combination with short exposure to UVA light increase extracellular matrix deposition of elastin and collagen and may improve skin properties.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have