Abstract

In this work, the silver nanowires with an appropriate aspect ratio and plasmonic properties were successfully synthesized through a polyol process using PVP and characterized by UV-Visible Spectroscopy, scanning electron microscopy (SEM), X-ray diffraction (XRD) and Density Functional Theory (DFT) calculations. UV-Visible spectra display a dual peak line shape which can be ascribed to the transverse dipole resonance (longer wavelength) and the transverse quadrupole resonance (shorter wavelength) of silver nanostructures, respectively. SEM image shows the morphologies and aspect ratios of the synthesized silver nanowires after purification by acetone centrifugation process. The diameters of most of the silver nanowires are in the range of 90–100 nm, and lengths of 1–3 μm. Consequently, asprepared Ag nanostructres with suitabe aspect ratio, satisfactory surface plasmon resonance (SPR) and conductive properties can be considered for designing new plasmonic-semiconductor composite to enhance solar energy conversion efficiency of Photoelectrochemical (PEC) and Photovoltaic (PV) cells.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call