Abstract

A set-covering problem is called regular if a cover always remains a cover when any column in it is replaced by an earlier column. From the input of the problem - the coefficient matrix of the set-covering inequalities - it is possible to check in polynomial time whether the problem is regular or can be made regular by permuting the columns. If it is, then all the minimal covers are generated in polynomial time, and one of them is an optimal solution. The algorithm also yields an explicit bound for the number of minimal covers. These results can be used to check in polynomial time whether a given set-covering problem is equivalent to some knapsack problem without additional variables, or equivalently to recognize positive threshold functions in polynomial time. However, the problem of recognizing when an arbitrary Boolean function is threshold is NP-complete. It is also shown that the list of maximal non-covers is essentially the most compact input possible, even if it is known in advance that the problem is regular.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.