Abstract
Light Linear Logic (LLL) and Intuitionistic Light Affine Logic (ILAL) are logics that capture polynomial time computation. It is known that every polynomial time function can be represented by a proof of these logics via the proofs-as-programs correspondence. Furthermore, there is a reduction strategy which normalizes a given proof in polynomial time. Given the latter polynomial time “weak” normalization theorem, it is natural to ask whether a “strong” form of polynomial time normalization theorem holds or not. In this paper, we introduce an untyped term calculus, called Light Affine Lambda Calculus (λLA), which corresponds to ILAL. λLA is a bi-modal λ-calculus with certain constraints, endowed with very simple reduction rules. The main property of LALC is the polynomial time strong normalization: any reduction strategy normalizes a given λLA term in a polynomial number of reduction steps, and indeed in polynomial time. Since proofs of ILAL are structurally representable by terms of λLA, we conclude that the same holds for ILAL.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.