Abstract
Light and Elementary Linear Logic, which form key components of the interface between logic and implicit computational complexity, were originally introduced by Girard as ‘stand-alone’ logical systems with a (somewhat awkward) sequent calculus of their own. The latter was later reformulated by Danos and Joinet as a proper subsystem of linear logic, whose proofs satisfy a certain structural condition. We extend this approach to polytime computation, finding two solutions: the first is obtained by a simple extension of Danos and Joinet's condition, closely resembles Asperti's Light Affine Logic and enjoys polystep strong normalisation (the polynomial bound does not depend on the reduction strategy); the second, which needs more complex conditions, exactly corresponds to Girard's Light Linear Logic.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.