Abstract

We show that context semantics can be fruitfully applied to the quantitative analysis of proof normalization in linear logic. In particular, context semantics lets us define the weight of a proof-net as a measure of its inherent complexity: it is both an upper bound to normalization time (modulo a polynomial overhead, independently on the reduction strategy) and a lower bound to the number of steps to normal form (for certain reduction strategies). Weights are then exploited in proving strong soundness theorems for various subsystems of linear logic, namely elementary linear logic, soft linear logic and light linear logic.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.