Abstract
We explore a class of polynomial tensor-product spline surfaces on 3-6 polyhedra, whose vertices have valence n=3 or n=6. This restriction makes it possible to exclusively use rational linear transition maps between the pieces: transitions between the bi-cubic tensor-product spline pieces are either C1 or they are G1 (tangent continuous) based on one single rational linear reparameterization. The simplicity of the transition functions yields simple formulas for a hierarchy of splines on subdivided 3-6 polyhedra.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.