Abstract
The paper is concerned with rings of polynomial invariants of finite groups. In particular, it will be shown that these rings are isomorphic as modules over the Steenrod algebra P* if and only if the group representations are pointwise conjugate. An application to cohomology is the construction of classifying spaces of finite groups which are not homotopy equivalent, but where the cohomology rings are isomorphic as unstable modules over the (topological) Steenrod algebra.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.