Abstract
Abstract. We consider the problem of efficiently estimating multivariate densities and their modes for moderate dimensions and an abundance of data. We propose polynomial histograms to solve this estimation problem. We present first‐ and second‐order polynomial histogram estimators for a general d‐dimensional setting. Our theoretical results include pointwise bias and variance of these estimators, their asymptotic mean integrated square error (AMISE), and optimal binwidth. The asymptotic performance of the first‐order estimator matches that of the kernel density estimator, while the second order has the faster rate of O(n−6/(d+6)). For a bivariate normal setting, we present explicit expressions for the AMISE constants which show the much larger binwidths of the second order estimator and hence also more efficient computations of multivariate densities. We apply polynomial histogram estimators to real data from biotechnology and find the number and location of modes in such data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.