Abstract
ABSTRACTIn this paper, we propose two kernel density estimators based on a bias reduction technique. We study the properties of these estimators and compare them with Parzen–Rosenblatt's density estimator and Mokkadem, A., Pelletier, M., and Slaoui, Y. (2009, ‘The stochastic approximation method for the estimation of a multivariate probability density’, J. Statist. Plann. Inference, 139, 2459–2478) is density estimators. It turns out that, with an adequate choice of the parameters of the two proposed estimators, the rate of convergence of two estimators will be faster than the two classical estimators and the asymptotic MISE (Mean Integrated Squared Error) will be smaller than the two classical estimators. We corroborate these theoretical results through simulations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.