Abstract
BackgroundPolymorphisms in DNA repair genes have been associated to repair DNA lesions, and might contribute to the individual susceptibility to develop different types of cancer. Nucleotide excision repair (NER), base excision repair (BER), and double-strand break repair (DSBR) are the main DNA repair pathways. We investigated the relationship between polymorphisms in two NER genes, XPC (poly (AT) insertion/deletion: PAT-/+) and XPD (Asp312Asn and Lys751Gln), the BER gene XRCC1 (Arg399Gln), and the DSBR gene XRCC3 (Thr241Met) and the risk of developing lung cancer.MethodsA hospital-based case-control study was designed with 516 lung cancer patients and 533 control subjects, matched on ethnicity, age, and gender. Genotypes were determined by PCR-RFLP and the results were analysed using multivariate unconditional logistic regression, adjusting for age, gender and pack-years.ResultsBorderline association was found for XPC and XPD NER genes polymorphisms, while no association was observed for polymorphisms in BER and DSBR genes. XPC PAT+/+ genotype was associated with no statistically significant increased risk among ever smokers (OR = 1.40; 95%CI = 0.94–2.08), squamous cell carcinoma (OR = 1.44; 95%CI = 0.85–2.44), and adenocarcinoma (OR = 1.72; 95%CI = 0.97–3.04). XPD variant genotypes (312Asn/Asn and 751Gln/Gln) presented a not statistically significant risk of developing lung cancer (OR = 1.52; 95%CI = 0.91–2.51; OR = 1.38; 95%CI = 0.85–2.25, respectively), especially among ever smokers (OR = 1.58; 95%CI = 0.96–2.60), heavy smokers (OR = 2.07; 95%CI = 0.74–5.75), and adenocarcinoma (OR = 1.88; 95%CI = 0.97–3.63). On the other hand, individuals homozygous for the XRCC1 399Gln allele presented no risk of developing lung cancer (OR = 0.87; 95%CI = 0.57–1.31) except for individuals carriers of 399Gln/Gln genotype and without family history of cancer (OR = 0.57; 95%CI = 0.33–0.98) and no association was found between XRCC3 Thr241Met polymorphism and lung cancer risk (OR = 0.92; 95%CI = 0.56–1.50), except for the 241Met/Met genotype and squamous cell carcinoma risk (OR = 0.47; 95%CI = 0.23–1.00).ConclusionIn conclusion, we analysed the association between XPC, XPD, XRCC1, and XRCC3 polymorphisms and the individual susceptibility to develop lung cancer in the Spanish population, specifically with a highly tobacco exposed population. We attempt to contribute to the discovery of which biomarkers of DNA repair capacity are useful for screening this high-risk population for primary preventing and early detection of lung cancer.
Highlights
Polymorphisms in DNA repair genes have been associated to repair DNA lesions, and might contribute to the individual susceptibility to develop different types of cancer
In order to examine if genetic polymorphisms in DNA repair genes implicated in Nucleotide excision repair (NER), base excision repair (BER) and double-strand break repair (DSBR) pathways are associated with lung cancer risk, we have studied five polymorphisms in four genes (XPC, XPD, XRCC1, XRCC3) in 516 cases and 533 controls of a Caucasian population of Northern Spain, historically highly exposed to tobacco
We have examined whether polymorphisms in four DNA repair genes involved in the nucleotide excision (NER), base excision (BER), and double-strand break (DSBR) DNA repair pathways are implicated in the development of lung cancer in a Caucasian population from Asturias, Northern Spain
Summary
Polymorphisms in DNA repair genes have been associated to repair DNA lesions, and might contribute to the individual susceptibility to develop different types of cancer. Cigarette smoking is the major cause of lung cancer, only a small fraction of smokers develop this disease, suggesting that other causes, including genetic susceptibility, might contribute to the variation in individual lung cancer risk [3,4]. This genetic susceptibility may result from inherited polymorphisms in the genes involved in carcinogen metabolism and DNA damage repair [5,6,7]. These proteins are implicated in four major DNA repair pathways, including nucleotide excision repair (NER), base excision repair (BER), doublestrand break repair (DSBR) and mismatch repair (MMR) [9,10]
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have