Abstract

BackgroundMicroRNA dysregulation is a common event in leukemia. Polymorphisms in microRNA-binding sites (miRSNPs) in target genes may alter the strength of microRNA interaction with target transcripts thereby affecting protein levels. In this study we aimed at identifying miRSNPs associated with leukemia risk and assessing impact of these miRSNPs on miRNA binding to target transcripts.MethodsWe analyzed with specialized algorithms the 3′ untranslated regions of 137 leukemia-associated genes and identified 111 putative miRSNPs, of which 10 were chosen for further investigation. We genotyped patients with acute myeloid leukemia (AML, n = 87), chronic myeloid leukemia (CML, n = 140), childhood acute lymphoblastic leukemia (ALL, n = 101) and healthy controls (n = 471). Association between SNPs and leukemia risk was calculated by estimating odds ratios in the multivariate logistic regression analysis. For miRSNPs that were associated with leukemia risk we performed luciferase reporter assays to examine whether they influence miRNA binding.ResultsHere we show that variant alleles of TLX1_rs2742038 and ETV6_rs1573613 were associated with increased risk of childhood ALL (OR (95% CI) = 3.97 (1.43-11.02) and 1.9 (1.16-3.11), respectively), while PML_rs9479 was associated with decreased ALL risk (OR = 0.55 (0.36-0.86). In adult myeloid leukemias we found significant associations between the variant allele of PML_rs9479 and decreased AML risk (OR = 0.61 (0.38-0.97), and between variant alleles of IRF8_ rs10514611 and ARHGAP26_rs187729 and increased CML risk (OR = 2.4 (1.12-5.15) and 1.63 (1.07-2.47), respectively). Moreover, we observed a significant trend for an increasing ALL and CML risk with the growing number of risk genotypes with OR = 13.91 (4.38-44.11) for carriers of ≥3 risk genotypes in ALL and OR = 4.9 (1.27-18.85) for carriers of 2 risk genotypes in CML. Luciferase reporter assays revealed that the C allele of ARHGAP26_rs187729 creates an illegitimate binding site for miR-18a-3p, while the A allele of PML_rs9479 enhances binding of miR-510-5p and the C allele of ETV6_rs1573613 weakens binding of miR-34c-5p and miR-449b-5p.ConclusionsOur study implicates that microRNA-binding site polymorphisms modulate leukemia risk by interfering with the miRNA-mediated regulation. Our findings underscore the significance of variability in 3′ untranslated regions in leukemia.

Highlights

  • MicroRNA dysregulation is a common event in leukemia

  • Considering that miRNAs have been shown to play an essential role in leukemogenesis and that Single nucleotide polymorphism (SNP) in miRNA-binding sites in target genes have been associated with various cancers, in this study we aimed at identifying miRNA-binding site polymorphism (miRSNP) associated with leukemia risk and assessing the impact of these miRSNPs on miRNA binding to target transcripts

  • Identification of putative SNPs affecting miRNA binding To identify putative miRSNPs we analyzed SNPs located in the 3′3′ untranslated region (UTR) regions of genes with reported relevance for leukemias

Read more

Summary

Introduction

MicroRNA dysregulation is a common event in leukemia. Polymorphisms in microRNA-binding sites (miRSNPs) in target genes may alter the strength of microRNA interaction with target transcripts thereby affecting protein levels. In animals miRNAs bind to target sequences (usually located in the 3′ untranslated region [3′UTR]) in messenger RNAs (mRNAs) and act by negatively regulating gene expression. This binding requires complementarity between the nucleotides 2-8 of miRNA (so called “seed” region) and the target mRNA [1]. To date more than 2500 mature human miRNAs have been identified [2] and they are predicted to regulate over 60% of human protein-coding genes [3] This regulatory network can be very complex as one miRNA may potentially regulate several mRNAs, and a given mRNA may possess in its sequence binding sites for several miRNAs. Since miRNAs control a wide variety of biological processes, including proliferation, apoptosis and differentiation, dysfunctions of the miRNA regulatory network may contribute to tumorigenesis. Only one study associated a SNP in the 3′UTR of the NPM1 gene with adverse outcome in acute myeloid leukemia [16]

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call