Abstract

Organic anion-transporting polypeptide 1A2 (OATP1A2) is involved in the cellular uptake of methotrexate (MTX). Genetic variation in solute carrier organic anion transporter family member 1A2 (SLCO1A2, the coding gene of OATP1A2) has important implications for the elimination of MTX. We investigated the association between a microRNA (miRNA) binding site polymorphism (rs4149009 G > A) in the 3′-untranslated region (3′-UTR) of SLCO1A2 with the serum MTX concentrations in Chinese children with acute lymphoblastic leukemia (ALL). Genotyping for SLCO1A2 rs4149009 G > A in 141 children with ALL was performed using the Sequenom MassARRAY system. Serum MTX concentrations were determined by fluorescence polarization immunoassay. The percentages of MTX level ≥1 μmol/L at 42 h were compared among the AA, GA, and GG genotypes. The minor allele frequency observed in this study (33.0%) was significantly lower than that in the African samples reported in the 1000 Genomes Project (57.4%, P = 0.00). The incidence rate of delayed MTX elimination was significantly higher in patients with the GG genotype (23.1%) compared with the AA genotype (0.0%, P = 0.03). Bioinformatics tools predicted that the rs4149009 A allele would disrupt the putative binding sites of hsa-miR-324-3p and hsa-miR-1913. These results indicate that the rs4149009 G > A polymorphism might affect MTX pharmacokinetics by interfering with the function of miRNAs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.