Abstract

Goat farming in Bangladesh is primarily centred on indigenous Black Bengal goat, a highly prolific breed. Searching for genetic markers associated with prolificacy in this breed is vital for the country's goat breeding industry. However, there are no reports on polymorphisms associated with the fertility of Bangladeshi Black Bengal goats. This study investigated two major fecundity genes-bone morphogenetic protein 15 (BMP15) and growth differentiation factor 9 (GDF9) to detect any possible mutations in these two genes associated with litter size in Black Bengal goats. Blood samples were collected from 40 raised goats in Hathazari Government Goat Farm, Bangladesh. Genomic DNA was extracted; PCR amplification was performed; and sequencing of PCR products was performed to detect polymorphism loci in the target genes. Five SNPs viz. C735A, C743A, G754T, C781A and C808G were detected in exon 2 of BMP15 gene. A SNP (T1173A) was detected in GDF9 exon 2. Association results show that SNPs at the 735, 754 and 781 nucleotide positions of BMP15 exon 2 had a significant association with litter size in Black Bengal goat. The effect of parity was also highly significant (P < 0.001) on litter size. For the first time, this study explored SNP loci in fecundity genes in Bangladeshi prolific Black Bengal goats. Further studies with many genetically unrelated animals for assessing the association of these loci and others in the fecundity genes with litter size may be useful.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.