Abstract

We report the formation and systematic struc-tural characterization of a new AB(6) polymorph with the body-centered cubic (bcc) symmetry in binary nanocrystal superlattices (BNSLs). The bcc-AB(6) phase, lacking any atomic analogue, is isomorphic to certain alkali-metal intercalation compounds of fullerene C(60) (e.g., K(6)C(60)). On the basis of the space-filling principle, we further tailor the relative phase stability of the two AB(6) polymorphs-CaB(6) and bcc-AB(6)-from coexistence to phase-pure bcc-AB(6), highlighting the entropic effect as the main driving-force of the self-organization of BNSLs. We also discuss the implication of surface topology studies and the observation of twinning and preferential orientation in bcc-AB(6) on the growth mechanism of BNSLs. Furthermore, the connection between the bcc-AB(6) phase and the (3(2).4.3.4) Archimedean tiling shows the promise of further exploration on the structural diversity (both periodic and aperiodic) in this emerging class of metamaterials. The identification and the ability to tune the relative phase stability of polymorphic structures provide a unique opportunity to engineer the interparticle coupling through controlled clustering and/or interconnectivity of sublattice in BNSLs with identical stoichiometry.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.